• (Nanowerk News) Realization of ‘3D printing’ material assembly on the micron or even nanometer scale has posed significant challenges to researchers. Now, scientists have developed a specialized computer simulation that guides an electron beam to create custom 3D structures. The beam induces a precursor material to deposit in a way that forms complex shapes (ACS Nano, ). This nanoscale 3D printing creates freestanding structures so tiny that bacteria dwarf them. text A 32-face 3D truncated icosahedron mesh was created to test a simulation’s ability to guide precise construction of complex geometries. Scanning electron microscopy of the product (left) showed excellent agreement with the nanoscale structure that the simulation predicted (right). (© ACS Nano)) The new approach, simulation-guided material deposition at the nanoscale, offers a path to synthesize materials with superior mechanical and optical properties. This design approach replaces trial-and-error in nanomanufacturing for materials and structures with superior mechanical and optical properties. Precision control of nanometer scale 3D fabrication has been a longstanding research goal. Now, researchers have developed a 3D simulation that guides focused electron beam induced deposition (FEBiD) of precursor molecules on a surface and accurately predicts the complex geometries of deposited shapes over the length scale from nanometers to micrometers. The simulation predicts gas-solid interactions where the electron beam strikes a surface. While FEBiD can direct-write freestanding 3D nanostructures, improved understanding of the dynamic interplay of the scanning electron beam and adsorbed precursor molecules is critical for advancing additive manufacturing of optoelectronics, metamaterials, and more. The simulations consist of (1) a Monte Carlo simulation to calculate the electron–solid interaction and (2) a continuum simulation to calculate surface adsorption, desorption, diffusion, and deposition of precursor molecules. The merged simulation can guide the electron beam to produce complex lattices and meshes sized between 10 nanometers and 1 micron. Source: Department of Energy, Office of Science

    Read more:


    Comments are closed

    Sorry, but you cannot leave a comment for this post.


    Latest Posts

    Latest Video



    Protected: Top Vape Pens To Buy In 2018 For Use With Weed

    There is no excerpt because this is a protected post.

    What To Do When You Become a Victim of Medical Malpractice

    Currently, medical malpractice ranging from misdiagnosis to medication errors and wrong-site surgery is rampant. Medical malpractice goes against the ethics and ethos of the medical…

    Veda Soothe Review: Can These 5 Herbs Help Stiff and Painful Joints?

    Joint pain is one of the most common health and wellness issues that especially face the middle-aged as well as the old-aged in the society….

    3 Tips for Coping After a Serious Accident

    Nobody wishes to be a part of a serious accident, but unfortunately, sometimes it happens. Whether it happens to be the fault of someone else…

    Sales Management Software Advantages To Remember

    When using sales management software you do gain access to many organizational benefits that the enterprise surely wants to take advantage of, helping achieve profit…

    Knowing the Process: Which Steps Does a Medical Malpractice Trial Involve?

      When you get involved in a medical malpractice, you need to file a suit right away to demand lawful compensation. Beware; these suits can…

    Less the Hassle: Buy Your Hearing Aids Online

    Hearing aids are potent devices that help people with hearing loss. Physically recover the ability to listen with great flexibility. This flexibility involves adjusting the…

    What Are the 4 Benefits of a Good Body Posture?

    Good body posture is as important as our health, appearance, good looks and confidence. When in excellent body posture, you can make that relaxed first…