• The feat made headlines around the world: “Scientists Say Human Genome is Complete,” in 2003. “The Human Genome,” the journals Science and Nature said in identical ta-dah cover lines unveiling the historic achievement.

    There was one little problem.

    “As a matter of truth in advertising, the ‘finished’ sequence isn’t finished,” said Eric Lander, who led the lab at the Whitehead Institute that deciphered more of the genome for the government-funded Human Genome Project than any other. “I always say ‘finished’ is a term of art.”

    “It’s very fair to say the human genome was never fully sequenced,” Craig Venter, another genomics luminary, told STAT.

    “The human genome has not been completely sequenced and neither has any other mammalian genome as far as I’m aware,” said Harvard Medical School bioengineer George Church, who made key early  in sequencing technology.

    What insiders know, however, is not well-understood by the rest of us, who take for granted that each A, T, C, and G that makes up the DNA of all 23 pairs of human chromosomes has been completely worked out. When scientists finished the first draft of the human genome, in 2001, and again when they had the final version in 2003, no one lied, exactly.  from the National Institutes of Health refer to the sequence’s “essential completion,” and to the question, “Is the human genome completely sequenced?” they answer, “Yes,” with the caveat — that it’s “as complete as it can be” given available technology.

    Perhaps nobody paid much attention because the missing sequences didn’t seem to matter. But now it appears they may play a role in conditions such as cancer and autism.

    “A lot of people in the 1980s and 1990s [when the Human Genome Project was getting started] thought of these regions as nonfunctional,” said Karen Miga, a molecular biologist at the University of California, Santa Cruz. “But that’s no longer the case.” Some of them, called satellite regions, misbehave in some forms of cancer, she said, “so something is going on in these regions that’s important.”

    Miga regards them as the explorer Livingstone did Africa — terra incognita whose inaccessibility seems like a personal affront. Sequencing the unsequenced, she said, “is the last frontier for human genetics and genomics.”

    Church, too, has been making that point, mentioning it at both the May of an effort to synthesize genomes, and at last weekend’s meeting of the International Society for Stem Cell Research. Most of the unsequenced regions, he said, “have some connection to  and ” (an abnormal number of chromosomes such as what occurs in Down syndrome). Church estimates 4 percent to 9 percent of the human genome hasn’t been sequenced. Miga thinks it’s 8 percent.

    The reason for these gaps is that DNA sequencing machines don’t read genomes like humans read books, from the first word to the last. Instead, they first randomly chop up copies of the 23 pairs of chromosomes, which total some 3 billion “letters,” so the machines aren’t overwhelmed. The resulting chunks contain from 1,000 letters (during the Human Genome Project) to a few hundred (in today’s more advanced sequencing machines). The chunks overlap. Computers match up the overlaps, assembling the chunks into the correct sequence.

    That’s between difficult and impossible to do if the chunks contain lots of repetitive segments, such as TTAATATTAATATTAATA, or TTAATA three times. “The problem is, when you have the same exact words, it’s hard to assemble,” said Lander, just as if jigsaw puzzle pieces show the same exact blue sky.

    In 2004, the genome project  that there were 341 gaps in the sequence. Most of the gaps — 250 — are in the main part of each chromosome, where genes make the proteins that life runs on. These gaps are tiny. Only a few gaps — 33 at last count — lie in or near each chromosome’s centromere (where the two parts of a chromosome connect) and telomeres (the caps at the end of chromosomes), but these 33 are 10 times as long in total as the 250 gaps.

    That makes the centromeres in particular the genome’s uncharted Zambezi. Evan Eichler of the University of Washington said every chromosome has such sequence-defying repetitive elements — think of them as DNA stutters — including an infamous one that’s 171 letters long and repeated end-to-end for thousands of letters.

    At the beginning of the Human Genome Project, said Lander, now director of the Broad Institute of MIT and Harvard, “it became very clear these highly repetitive sequences would not be tractable with existing technology. It wasn’t a cause of a great deal of agonizing at the time,” since he and other project leaders expected the next generation of scientists to find a solution.

    That hasn’t really happened, partly because there hasn’t been much motivation to map these regions. “I’m between agnostic and a little skeptical that these bits will be important for disease, but maybe I’m saying that because we can’t read them,” Lander said.

    As new sequencing technology has begun allowing scientists to peek into unsequenced territory, however, they have seen that “these tough-to-sequence regions frequently have important genes,” said Michael Hunkapiller, chairman and CEO of Pacific Biosciences, which makes DNA sequencers. (In 1998, Hunkapiller recruited Venter to his new company, Celera Genomics, to race the government-backed genome project; the race ended in a de facto tie.)

    PacBio’s “reason for being” is to increase the length of DNA segments that can be read and assemble them, Hunkapiller said. Longer reads have an effect like enlarging jigsaw puzzle pieces; even though the pieces still contain a lot of repeated blue sky, the greater size makes it more likely they’ll also contain something sufficiently novel to make assembling them easier. PacBio’s maximum DNA read is now about 60,000 letters, Hunkapiller said, and averages 15,000.

    With such long reads, Lander said, “you could get through a lot of these nasty [unsequenced] regions.”

    That’s looking more and more like a worthy undertaking, and not only because the unsequenced regions might contain actual protein-making genes. There is evidence that the non-gene parts — especially the DNA stutters — “clearly have disease implications,” Hunkapiller said. “Three-quarters of the [genome] differences between one person and another are in [such] variants” rather than the single-letter spelling differences in A’s, T’s, C’s, and G’s which get all the attention. In a 2007 , Venter (now the chairman of Human Longevity Inc.)  and his team showed that there are more person-to-person differences like this, called structural variants, than there are single-letter changes.

    Yet about 90 percent of the structural variants, the vast majority of which weren’t sequenced by either the genome project or a later effort called the , “have been missed,” Eichler and his colleagues last year.

    One reason the stutters are unusually influential is that this repetitive DNA can move around, make copies of itself, flip its orientation, and do other acrobatics that “can have quite dramatic functional effects,” Hunkapiller said. For one thing, repetitive elements around the centromeres, called satellites, might cause a dividing cell to become cancerous, Miga said, because they can destabilize the entire genome.

    When researchers at Stanford University tried to find the genetic cause of a young man’s mysterious disease, which caused non-cancerous tumors to grow throughout his body, they found nothing using the standard whole-genome sequencing, Hunkapiller said. But the “long reads” made possible by the PacBio machines “looked for structural variants and found the problem right away,” he said.

    The stutters might even be what makes us human. Some of these complex duplications “appear to be important for the evolution of higher neuroadaptive function” — aka brain development, Eichler said. A gene called ARHGAP11B, which was created by one such duplication, causes the cortex to develop the myriad folds that support complex thought; SRGAP2C, also a duplication, triggers brain development.

    “These are new genes that evolved specifically in our lineage over the last few million years,” said Eichler. The same duplications can also produce DNA rearrangements “associated with neurodevelopmental disorders such as autism and intellectual disability.”

    “Finish the sequence!” hasn’t become a rallying cry, but maybe it should be, Venter said: “I’d be the last one to give you a quote saying that we don’t need to bother with these [unsequenced] regions.”

     

    Comments are closed

    Sorry, but you cannot leave a comment for this post.

     

    Latest Posts

    Latest Video

     
     

    LATEST POSTS

    What To Expect When Going To A Local Therapist

    Much of the population still looks down on therapy and psychologists. The primary reason for this is that therapy is vastly misunderstood by the general…

    Calm Body and Calm Mind: 4 Stress-Relief Strategies You Can Try

    Stress comes in different ways. First, stress can be in the form of acute stress. Acute stress is the kind of stress that you acquire,…

    Programming the Subconscious to Fight Diabetes

    Diabetes is a life-threatening illness that causes strokes, heart attacks, kidney failure, and blindness. Every year, 1.5 million Americans learn they have the illness. For…

    Vision of the Future in AR and Mixed Reality

    SOURCE Hello everyone who is reading our blog In this post I would like to share some of my thoughts and observations on how different…

    Keeping out of Trouble: 3 Scenarios Where Health Insurance Can Drop You

    Your health insurance is incredibly important, which is why the idea of being dropped by your insurance company is so concerning. Your health insurance provider…

    Health Benefits Associated With Drinking Water

      Out all the things that we eat and drink, water stands out as the most important one. When you drink water the body is…

    Artificial Intelligence Diagnoses Heart Murmurs Better Than Expert Cardiologists

    SOURCE Eko’s heart murmur detection algorithm outperformed four out of five cardiologists for the detection of heart murmurs in a recent clinical study. The algorithm…

    121.granit-sunrise.com.ua

    www.zaraz.org.ua