• Someone in the US suffers a heart attack every 34 seconds, while someone dies from a heart-related disease every 60 seconds.
    • A new method from Australia uses bioprinting to create a patch of beating cardiac cells that can be stuck directly to a damaged organ following an attack.


    Researchers from the (HRI) have developed a , the first of its kind in Australia, that could replace a patient’s damaged cells after a heart attack.

    “When patients come into the clinic, they would provide us with their cells from their skin,” HRI scientist Dr Carmine Gentile explained. “Those cells can generate stem cells and then heart cells.” The resulting patch of beating cardiac cells can be stuck directly to a damaged organ following an attack. In order to be sure the patch is the right size and shape, each patient’s heart is first scanned to map the damage.

    , “the cells behave[d] like a real heart. This is a striking finding that we have been able to identify in our lab.”

    Initially a method used to produce various tools and equipment, 3D printing has been quickly . All bioprinters are still experimental, however, since their output has not yet been rigorously tested by medical experts.



    Bioprinting is no doubt more effective than current methods of coping with heart attacks, which force the heart vessels open to facilitate increased blood flow. Theoretically, this print-and-patch method should work for all patients without fear of rejection.

    “We haven’t succeeded in finding a solution in replacing the scar muscle or to regenerate hearts. That’s one of the holy grails of cardiovascular research at the moment and this is just one potential exciting solution,” Gemma Figree, a cardiologist.

    This is especially relevant since, according to , someone in the US suffers a heart attack every 34 seconds, while someone dies from a heart-related disease every 60 seconds. The costs of heart disease pile up to a hefty $320.1 billion, which also accounts for foregone productivity and healthcare expenditures.

    Experts from the HRI believe that the synthetic heart cells could even be used for testing drugs, particularly the side effects that might affect the patient. According to the researchers, these bioprinting methods could be available in about five years. The process will be costly however, as it is expensive to collect biological material to 3D bio-print a patch.


    Comments are closed

    Sorry, but you cannot leave a comment for this post.


    Latest Posts

    Latest Video



    What To Expect When Going To A Local Therapist

    Much of the population still looks down on therapy and psychologists. The primary reason for this is that therapy is vastly misunderstood by the general…

    Calm Body and Calm Mind: 4 Stress-Relief Strategies You Can Try

    Stress comes in different ways. First, stress can be in the form of acute stress. Acute stress is the kind of stress that you acquire,…

    Programming the Subconscious to Fight Diabetes

    Diabetes is a life-threatening illness that causes strokes, heart attacks, kidney failure, and blindness. Every year, 1.5 million Americans learn they have the illness. For…

    Vision of the Future in AR and Mixed Reality

    SOURCE Hello everyone who is reading our blog In this post I would like to share some of my thoughts and observations on how different…

    Keeping out of Trouble: 3 Scenarios Where Health Insurance Can Drop You

    Your health insurance is incredibly important, which is why the idea of being dropped by your insurance company is so concerning. Your health insurance provider…

    Health Benefits Associated With Drinking Water

      Out all the things that we eat and drink, water stands out as the most important one. When you drink water the body is…

    Artificial Intelligence Diagnoses Heart Murmurs Better Than Expert Cardiologists

    SOURCE Eko’s heart murmur detection algorithm outperformed four out of five cardiologists for the detection of heart murmurs in a recent clinical study. The algorithm…